Increasing the spatial resolution of agricultural land cover maps using a Hopfield neural network
نویسندگان
چکیده
Land cover class composition of remotely sensed image pixels can be estimated using soft classification techniques increasingly available in many GIS packages. However, their output provides no indication of how such classes are distributed spatially within the instantaneous field of view represented by the pixel. Techniques that attempt to provide an improved spatial representation of land cover have been developed, but not tested on the difficult task of mapping from real satellite imagery. The authors investigated the use of a Hopfield neural network technique to map the spatial distributions of classes reliably using information of pixel composition determined from soft classification previously. The approach involved designing the energy function to produce a ‘best guess’ prediction of the spatial distribution of class components in each pixel. In previous studies, the authors described the application of the technique to target identification, pattern prediction and land cover mapping at the sub-pixel scale, but only for simulated imagery. We now show how the approach can be applied to Landsat Thematic Mapper (TM) agriculture imagery to derive accurate estimates of land cover and reduce the uncertainty inherent in such imagery. The technique was applied to Landsat TM imagery of small-scale agriculture in Greece and largescale agriculture near Leicester, UK. The resultant maps provided an accurate and improved representation of the land covers studied, with RMS errors for the Landsat imagery of the order of 0.1 in the new fine resolution map recorded. The results showed that the neural network represents a simple efficient tool for International Journal of Geographical Information Science ISSN 1365-8816 print/ISSN 1362-3087 online © 2003 Taylor & Francis Ltd http://www.tandf.co.uk/journals DOI: 10.1080/1365881031000135519 A. J. Tatem et al. 648 mapping land cover from operational satellite sensor imagery and can deliver requisite results and improvements over traditional techniques for the GIS analysis of practical remotely sensed imagery at the sub pixel scale.
منابع مشابه
Super-resolution mapping using Hopfield Neural Network with Panchromatic image
Super-resolution mapping or sub-pixel mapping is a set of techniques to produce the hard land cover map at sub-pixel spatial resolution from the land cover proportion images obtained by soft-classification methods. In addition to the information from the land cover proportion images at the original spatial resolution, supplementary information at the higher spatial resolution can be used to pro...
متن کاملSuper-resolution target identification from remotely sensed images using a Hopfield neural network
Fuzzy classification techniques have been developed recently to estimate the class composition of image pixels, but their output provides no indication of how these classes are distributed spatially within the instantaneous field of view represented by the pixel. As such, while the accuracy of land cover target identification has been improved using fuzzy classification, it remains for robust t...
متن کاملLing, Feng and Foody, Giles M. and Ge, Yong and Li, Xiaodong and Du, Yun (2016) An iterative interpolation deconvolution algorithm for superresolution land cover
Super-resolution mapping (SRM) is a method to produce a fine spatial resolution land cover map from coarse spatial resolution remotely sensed imagery. A popular approach for SRM is a two-step algorithm, which first increases the spatial resolution of coarse fraction images by interpolation, and then determines class labels of fine resolution pixels using the maximum a posteriori (MAP) principle...
متن کاملSuper-resolution land cover pattern prediction using a Hopfield neural network
Landscape pattern represents a key variable in management and understanding of the environment, as well as driving many environmental models. Remote sensing can be used to provide information on the spatial pattern of land cover features, but analysis and classification of such imagery suffers from the problem of class mixing within pixels. Soft classification techniques can estimate the class ...
متن کاملEmpirical modeling potential transfer of land cover change pa city with neural network algorithms
Land-use change is one of the most important challenges of land-use planning that lies with planners, decision-makers and policymakers and has a direct impact on many issues, such as economic growth and the quality of the environment. The present study examines the land use change trends in Behbahan city for 2014 and 2028 using LCM in the GIS environment. Analysis and visibility of user variati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Geographical Information Science
دوره 17 شماره
صفحات -
تاریخ انتشار 2003